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Abstract

Suction foundations (that is, foundations using piles, skirted
compartments, or caisson units installed by or with the aid of
suction pressure) are finding increased use in offshore
foundations for deep water. Finite element analysis provides a
powerful solution technique for solving complex mechanics
problems from a fundamental approach without need for many
simplifying assumptions. This paper explains the role of finite
element analysis in the analysis and design of suction
foundations for offshore production and exploration systems.

Suction foundation units have markedly different dimensions
and relative geometries than traditional offshore foundation
units.  Accordingly many of the “ad hoc” assumptions
employed in customary offshore foundation design and
analysis methods may not be applicable or productive, and
more sophisticated design analysis methods can be beneficial.
The finite element method both enables freedom from
undesired assumptions and provides guidance and justification
for proper formulation of simplifying assumptions.

Among the aspects of suction foundation performance that

have been investigated via the finite element approach

include:

e The significance of interaction between vertical and
horizontal components of capacity,

e Effects of separation of the soil from the trailing side of
the pile or caisson,

e Sensitivity of foundation performance to skin friction
conditions,

e Sensitivity of foundation performance to load point
location.

Proper attention to details such as these via finite element

analysis of suction foundation designs can help to avoid costly

overdesign without incurring undue risk.

General

The finite element method is experiencing increased use in
offshore foundation engineering. This increase is mostly in
connection with suction foundations for deep water
applications. The most common applications of the method
have been to provide insight into foundation design parameter
selection through elucidating performance phenomena (e.g.
Sparrevik (2002)), to perform parametric studies (e.g.
Zdravkovic et al. (2001)) and to provide benchmarks for
results of either other calculation methods (e.g., Randolph and
House (2002)) or centrifuge testing (e.g. Clukey and Morrison
(1993)). Through applications like these, finite element
analysis can help to reduce uncertainty in the design process
by providing highly accurate solutions to complex foundation
problems.

The finite element method is a technique for solution of
mathematical problems governed by systems of partial
differential equations. It can produce close approximate
solutions to problems with highly complex geometries,
material behaviors and boundaries which would result in
highly complex feildwise variations in the solution variables.
The method accomplishes this by subdividing the solution
space into many pieces (the finite elements) sufficiently small
that the variations in the solution variables can be well
approximated within each by very simple functions.
Implementation of the method numerically on modern digital
computers enables highly accurate solutions with extremely
large numbers of small elements. All of the governing
equations are then solved on all of the elements, and the
elemental solutions are assembled into the solution for the
whole, subject to compatibility and continuity requirements.

The method is particularly well suited to problems in solid
mechanics because the element formulations are most
straightforward when the boundaries of the elements represent
material surfaces. In this application, the governing equations
are laws of classical mechanics and assumptions of continuum
mechanics (including constitutive relations for  material
behavior), and complete problems are posed by adding to
these the specification of material properties, loads and
boundary conditions. The method is especially attractive for
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soil mechanics applications because soils have much more
complex material behavior than most other materials, and
other available solution methods usually require more
restrictive material behavior assumptions. With respect to the
true solution to a properly posed boundary value problem in
solid mechanics, taken as an ideal, one can generally obtain a
finite element solution that is as close to the ideal as is desired,
so long as one can work the problem within program
capabilities and pay the required attention to minimizing the
unavoidable errors.

In modern finite element programs, all of the governing
equations are usually solved exactly, with the exception of
nonlinear material behavior and equilibrium. Errors
associated with approximation of nonlinear material behavior
are normally minimized within the program by iteration
subject to very strict criteria. The analyst, then, can generally
obtain a solution of any desired accuracy by ensuring proper
specification of geometry, location and conditions for loads
and boundary conditions, material behavior and properties
and by minimizing equilibrium errors.

The most fundamental source of equilibrium error in a finite
element solution is the fact that equilibrium is enforced only in
a weak form - over each element as a whole rather than at
every point in the solution space. In a linear analysis, this
source of error causes the model to be too stiff; that is, loads
will be too high at any particular displacement. In a nonlinear
analysis, the results will typically be too strong; e.g., ultimate
capacities will be too high. However, in models with
disparate redundant load paths, this source of error can result
in unrealistically low capacity if the stiffening effect transfers
load to a path of inherent weakness. The size of this error
depends on the fineness of the mesh and upon the element
formulation. For any particular choice of element type, the
finer the mesh, the smaller this error. This error can always be
reduced by making the mesh finer, particularly in areas of high
gradients in the solution, but there are practical limits of cost,
schedule and resources. This error can also be reduced, for
some problems, by employment of element types that
incorporate higher order displacement functions. The analyst
can test relative performance of various element types
available, choose the most economical adequately performing
element and ultimately qualify the mesh fineness by
demonstrating insensitivity of results to model change to a
mesh that is finer than necessary, either globally or in targeted
regions. The type of equilibrium error discussed so far is
inherent to the finite element approximation; that is, even an
exact solution to the defined finite element problem has this
error with respect to the exact solution for the underlying
continuum problem. In a linear analysis this inherent
equilibrium error is typically the only type of equilibrium error
encountered because a linear finite element problem can be
solved exactly.

In a nonlinear analysis, the nonlinear nature of the governing
equations usually necessitates an approximation in the solution

of the finite element problem itself. The result of this is an
equilibrium error associated with an imbalance of residual
forces at the nodes. The nodes are the points in solution space
at which continuity between elements is enforced, and
equilibrium requires a balance of internal and external forces
at each and every node. This solution equilibrium error can be
minimized by minimizing the increment size in an incremental
solution and/or by taking an iterative approach to the
achievement of acceptable solution for each increment.
Without iteration, the analyst should inspect the errors of this
type as reported by the program and either accept them or
rerun the analysis with smaller increments. With an iterative
solution technique, the user can specify a tolerance on solution
error, and the program will iterate until the tolerance is
satisfied or end for inability to achieve a satisfactory solution.

With only moderate attention to these solution accuracy
details, finite element results may often be achieved with
errors of 15% or 20%. Such errors may be acceptable in a
situation where there is no important engineering consequence
of such levels or when sufficient conservatism can be applied
to cover the uncertainty. In critical applications, on the other
hand, the errors in finite element analysis results can be
reduced to truly insignificant levels through sufficient
attention to error minimization.

Examples

In the following, results are presented from finite element
analyses of the foundation performance of suction piles and
caissons. Figure 1 shows the typical configuration for the
finite element mesh used. Both the pile and caisson cases
involved applications as mooring anchors.  The only
significant distinction between pile and caisson was relative
geometry. The ratio of embedded length to diameter was 5-to-
1 in the case of the pile and 2-to-1 in the case of the caisson.
Using mesh configurations such as shown in figure 1,
solution accuracy was explored with both first order and
second order element types and with model sizes ranging form
approximately 8,000 to over 30,000 degrees of freedom. With
relatively uniform element sizes, at least 13,000 degrees of
freedom were generally required for achievement of accurate
results, but with significant mesh refinement in the areas of
high solution gradients, 8,000 degrees of freedom were often
sufficient.

Both the pile and the caisson cases were analyzed for soil
strength profiles having small but finite strength at the
mudline and linear increase of strength with depth
representative of common offshore normally consolidated clay
sites. Other common characteristics of the analyses for both
cases included the following:

e Total stress analyses simulating undrained conditions
were performed.

e This soil was modeled as an elastic-plastic material.
Analyses were performed both for elastic-perfectly plastic
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assumptions and for a work-hardening material with an
approximately  hyperbolic  stress-strain  relationship
achieving a maximum strength at 7% (axial) strain. A
distinctly different maximum shear strength was assigned
to each modeled soil layer, according to the prescribed
linear strength profile. The plastic yield function used
had a Mises criterion in the pi plane. The effects of stress
space anisotropy were studied parametrically.

e The soil inside of the pile was modeled, as well as that on
the outside. A no-slip condition was taken between the
inside surface of the caisson and the adjacent soil. This
approximated the condition of the suction above the soil
plug being sufficient to prevent slip at the inside caisson
surface. Friction assumptions on the outside pile surface
were varied from a (frictionless) slip condition to a tied
(no slip) condition.

e Analyses were performed both for small deformation and
large deformation assumptions. The wuse of large
deformation assumptions enabled correct solutions in
regard to large strain effects, large rotation effects and the
effects of large displacements, such as load point
movement.

e Neither the weight of the soil nor the weight of the
caisson was modeled specifically.

The suction pile modeled was a 60-ft long by 12-ft diameter
pile in normally consolidated clay conditions common to the
Gulf of Mexico. The pile was loaded as a mooring anchor
with a load attachment point at a 40-m penetration and at a
load elevation angle of 26 degrees. This case was chosen to
correspond to the Straw Problem of the Offshore Technology
Research Center’s 2001 Suction Foundation workshop. Other
specific details of the problem were taken from Gilbert and
Murff (2001).

This pile problem was solved using two different commercial
finite element computer programs. Figure 2 shows load vs.
displacement results obtained with Program A. This figure
presents comparisons showing the sensitivity of results to
mesh size and element selection and to the nature and location
of boundary conditions. Results for cases with and without
the use of infinite elements at the outside soil boundaries were
virtually identical. Very nearly the same results were obtained
using an 8,000-degree of freedom mesh of first order elements
and a 30,000-degree of freedom mesh of second order
elements. The agreement obtained indicates that the smaller
mesh is satisfactory in this case.

Figure 3 presents a comparison of results obtained with
Program A and Program B for both small deformation and
large deformation assumptions. The same mesh and soil
properties were used with both programs, but the material
behavior convergence tolerances and strategies, the nonlinear
solution equilibrium criteria and strategies, the incrementation
and the theoretical approaches to incorporating large
deformation effects are all entirely different. The remarkable

agreement between the solutions from the two programs
indicates that these solutions are all highly accurate in regard
to material nonlinearity approximation errors, to nonlinear
solution equilibrium errors and also to errors due to
approximations in the large deformation solution strategies.

Also shown on figure 3 is the capacity adjusted form the
Workshop solution for this problem. The unfactored
Workshop solution (Gilbert and Murff (2001)) was adjusted to
eliminate pile and soil weights, take an end bearing capacity
factor of 9.0 and assume capacity is primarily limited by axial
rather than lateral performance. The level of agreement of the
finite element solution limit loads with this calculated capacity
is comforting, but it should probably be regarded as a
fortuitous result of the combination of the effects of various
differences in problem assumptions.

The purpose of the analyses performed for the caisson was to
determine expected sensitivity of the caisson performance to
the location of the load attachment point and to possible
variations in the external skin friction, all for a load elevation
angle of 38 degrees. All of the analyses for this study were
performed using Program A with a 13,000-degree of freedom
mesh, first order elements, infinite elements at the soil outside
boundaries and large deformation assumptions.

The results for load vs. displacement performance of the
caisson were sensitive to both the anchor point penetration and
the assumed friction condition on the caisson’s outer surface.
The most favorable friction assumption increased capacity by
approximately 25%. This modeling assumption is related to
the degree of post-installation set-up, a parameter that often
cannot be predicted accurately. Capacity was less sensitive to
variations in the penetration of the anchor attachment point.
With no friction on the caisson outer surface, an anchor point
attachment at a penetration 58.5% of the caisson penetration
produced the greatest capacity, but anchor point penetrations
ranging from 50% to 69% of the caisson penetration produced
capacities within 2% of that maximum.

Figures 4 through 7 present plots of plastic strain contours at
pullout for the four analyses with various anchor attachment
point penetrations, with the slip (no friction) condition on the
caisson outer surface. The contour plots are all presented on
deformed mesh plots that clearly display the patterns of
displacement for both the caisson and the soil. The plastic
strain variable contoured in these plots is the magnitude of
plastic strain, a scalar invariant of plastic strain that is
conjugate to the Mises stress. The value of this plastic strain
variable indicates the severity of plastic deformation at any
location, and its contour plots show the spatial distribution of
the extent of soil yielding. Figure 4 shows the plastic strain
contours for the case of the shallowest anchor attachment
point penetration (40% of the embedded length). In this case,
the axis of the caisson tilts significantly toward the anchor
load line, and the greatest soil yielding is concentrated in the
weaker soils near the mudline. Figure 5 shows the contours
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for the case of the anchor attachment point at a penetration of
50% of the embedded length. In this case, there is little
caisson tilt, and the soil yielding is distributed rather
uniformly along the caisson. Figure 6 shows the plastic strain
contours for the case of the 58% anchor attachment point
penetration. In this case, the axis of the caisson tilts slightly
away from the anchor load line, and the greatest soil yielding
is concentrated near the bottom of the caisson. Figure 7 shows
the plastic strain contours for the case of the 69% anchor
attachment point penetration. In this case, the axis of the
caisson tilts significantly away from the anchor load line. The
greatest soil yielding in this case is concentrated near the
bottom of the caisson, but there is also a region of significant
soil yielding near the mudline, where the soil is resisting the
reverse direction displacement of the top of the caisson.

The analyses related to figures 4 through 7 did not allow for
soil separation from the caisson; however, some of the results
indicate that separation could be promoted. Figure 8§ shows
similar results for a pile case conducted with allowance for
separation and with assumptions to promote maximum
separation: loading above the pile midpoint and no beneficial
effect of deep-water hydrostatic pressure. The results showed
minimal separation, and the effect on capacity was entirely
negligible. These results indicate that the common practice of
allowing for separation effects by disallowing all lateral
reaction on the trailing side of the pile (see Gilbert and Murff
(2001)) may by overly conservative.

Collectively these results provide an excellent example of the
ability of finite element analysis to elucidate the phenomena,
which can occur in suction foundation performance.

Conclusions

In view of the results and discussions presented it this paper,
we conclude that the most important role of finite element
analysis in the design of suction pile foundations is one of
Enlightenment. By this term reference is made not to the
popularly recognized Enlightenment of the 18th century (AD)
but rather to that of the fourth and fifth century (AD)
philosopher, Augustine of Hippo. Augustine was a student of
the philosophy of Plato. According to Cornford (1961), Plato
had identified a hierarchy of levels for the accessibility of
things and inversely related levels of perfection (in terms of
clarity, certainty, truth, etc.). In Plato’s hierarchy, the lowest
level of perfection is associated with images of (physical)
objects, which exist at the highest level of accessibility. Next
in the hierarchical order are the objects the themselves
followed, in turn, by mathematical objects and (ideal) forms.
For Plato, the pursuit of higher and higher levels of perfection
in states of mind involved progression of observations through
each of these levels from imagination (images) to belief
(through observation of objects) to thinking (e.g.,
mathematics) to knowledge (ideal forms). Augustine (399)
realized that just as Plato’s observations in the visible world
needed to be enabled by Illumination, so also the observations
in the intelligible world required a corresponding

Enlightenment. If we apply this philosophy to the case of
(suction) pile performance, the performance of an actual pile
is the physical thing in question. Tests (model or field) of pile
performance play the role of the images. An idealized
problem in classical solid mechanics is the ideal form, and a
mathematical  problem  with  requisite = assumptions
approximating the mechanics problem completes the set.

Because of it’s ability to handle complex details with few
restrictive assumptions, the finite element method both allows
the consideration of an extremely realistic idealized problem
and enables employment of mathematical problems extremely
close to the idealized solid mechanics problem. Through these
advantages, and through its inherent ability to produce results
in forms that graphically elucidate phenomena, the finite
element method can provide the Enlightenment necessary for
the achievement of very high level of certainty and knowledge
in the intelligible world.

Most customary engineering for offshore pile foundations is
based on mathematical calculations truthed by checks with
empirical data both from successful field experience and from
tests of pile performance. Good engineering design always
involves the application of a level of conservatism consistent
with the level of certainty in the methods and data being
applied. In the present connection, this level of certainty is
limited by the closeness with which both the empirical
situations and the mathematical assumptions can approach the
actual pile case. Since currently advocated offshore suction
pile foundations are, in both size and function, less closely
connected to the relevant empirical data base, the only way
that the overall certainty in their foundation engineering can
be maintained at a level consistent with customary offshore
practice is through the employment of idealizations and
mathematical solution methods that reflect reality more
closely than do those that have been used traditionally. Finite
element analysis can fill this need.
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Fig. 1 Finite element mesh for suction pile or caisson
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Fig. 2 Program A results for Straw Problem Pile
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Finite Element Results for OTRC Workshop Straw Problem
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Fig. 3 Program A and Program C results for Straw Problem Pile
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Fig. 5 Plastic strain results, caisson loaded at 50% of penetration
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