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Introduction

• Outline of idealised critical stress/strain 
paths for modelling integral abutments in 
plane strain

• Biaxial element simulation of these paths 
using original 3SKH model 

• A fundamental abutment wall situation -
FEA to illustrate main drawbacks of 
current 3SKH model

• A modified 3SKH model is proposed to 
improve prediction for drained granular soil
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A simple embedded integral 
abutment illustration
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Displacement (δ) at top of wall

relates to:

1) initial installation effects and 
deck shrinkage/creep

2) long-term deck expansion 
and contraction due to daily 
and annual temperature 
change

Idealised stress paths in element A
(constant σ and varying εh)
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m1 = Monotonic unloading path

m2 = Monotonic loading path

c = Cyclic loading path



3

Biaxial element simulation

• Illustrative biaxial simulation for 
element A with OCR=9 (e0=0.65)

• εh controlled biaxial loading in 
plane strain

• Results from a NMC model with 
similar strength parameter 
(φ’=25°) and ψ’=15° plotted for 
comparison

Biaxial compression
(OCR=9 & δεh=-0.30)

φ’mob (peak) = 29°*

*Note that in plane strain, φ’mob= sin-1(t/s’)

t/s’ VS εs εv VS εs
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Biaxial extension
(OCR=9 & δεh=+0.30)

φ’mob (peak) = 63°!

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

t/s’ VS εs εv VS εs

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.30

t/s’ VS εs εv VS εs

Biaxial cyclic
(OCR=9 & δεs=±0.01 ) 

t/s’ VS εs e VS εs
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Biaxial cyclic
(OCR=9 & δεs=±0.00125) 

t/s’ VS εs e VS εs
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Conclusions from biaxial element 
simulation

• Excellent prediction in monotonic 
loading path; but excessive mobilised 
stress ratio as expected in monotonic 
unloading path

• Cyclic loading of model shows energy 
dissipation, and collapse or dilation 
depending on magnitude of cycle

• However, volumetric collapse predicted 
is much lower compared with 
experimental data
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FEA of excavation supported by a 
cantilevered wall

(model scale wall height=490mm)

1500mm

1000mm

FEA of retaining walls

• Aim is to illustrate the performance of 
3SKH model in predicting maximum 
excavated depth of a cantilevered wall 
embedded in granular soil

• For comparison, an identical run was 
performed using a Mohr-Coulomb model 
of similar material properties (φ’=28°)

• Analysis performed using 3SKH has 
OCR=4 to obtain realistic φ’mob

• Surcharge applied at ground level
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Predicted maximum depth
(cantilevered wall)

Top displacement Vs Excavation depth (cantilevered wall with surcharge)
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Stress distribution near failure
(cantilevered wall)
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Horizontal displacement contours, 
interval=1mm near failure

(cantilevered wall)

3SKH (TS with 30050 increments) NMC (MNR with 860 increments)

Maximum shear strain contours, 
interval=0.01 near failure

(cantilevered wall)

3SKH (TS with 30050 increments) NMC (MNR with 860 increments)
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Conclusions from FEA of 
cantilevered wall

• Excessive strains predicted in excavation        
(k0-unloading )

• Tension in the soil easily predicted for OCR 
> 4

• Very large number of increments necessary 
using the tangent stiffness scheme to avoid 
‘drifting’ of stress state into ‘illegal’ locations

• Hence, a modified 3SKH model is proposed 
to minimise the problems encountered in 
integral abutment situations

Development of a modified 3SKH

• 3 new parameters, each with its own physical 
significance:
§ α to modify the shape of the surfaces (Collins, 2002)
§ k to reduce the plastic shear component of the 

Modified Cam Clay flow rule (McDowell, 2003)
§ r to specify the ratio between Mf and Mg, as adopted 

by several previous researchers in modelling sand 
(e.g. Zienkiewicz, 1999)

• The original concept of 3SKH is retained; 
including the translation rules and modification 
to the hardening modulus
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Shapes of bounding surface by 
varying α

Varying α (constant r=1)
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Stress-dilatancy rule by varying 
parameter k

*D=δεp/ δεq

Stress-dilatancy
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A modified 3SKH
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Stress path OCR=10 & *?η=-3/2 
(Modified 3SKH)
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*?=δq/ δp

Stress path OCR=10 & *?η=-3/2 
(Modified 3SKH)
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Strain path OCR=10 & ?D*=-1 
(Modified 3SKH)
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Strain path OCR=10 & ?D*=-1 
(Modified 3SKH)
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Conclusions

• The main problems of using the original 
3SKH model to simulate integral 
abutment in drained granular soil has 
been outlined

• A modified 3SKH model with 3 extra 
parameters to enable variation in shape 
of the surfaces, ratio Mf to Mg and non-
associated flow rule has been formulated

• Illustrations of the translation rule, simple 
hardening stress path, and simple strain 
path have been performed using Matlab

Conclusions

• To implement into the FE program CRISP, 
the formulation has to be transferred in a 
generalised stress-strain space

• A more robust solution scheme such as a 
MNR method with a suitable integration 
algorithm would help to reduce the 
computing time and improve accuracy in 
using the 3SKH class of models


