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Introduction

Outline of idealised critical stress/strain
paths for modelling integral abutments in
plane strain

Biaxial element simulation of these paths
using original 3SKH model

A fundamental abutment wall situation -
FEA to illustrate main drawbacks of
current 3SKH model

A modified 3SKH model is proposed to
improve prediction for drained granular soil




A simple embedded integral
abutment illustration
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Displacement (d) at top of wall
relates to:

1) initial installation effects and
H deck shrinkage/creep

2) long-term deck expansion
and contraction due to daily
and annual temperature

change

|dealised stress paths in element A
(constant s and varying &)

q _ . -
csL m, = Monotonic unloading path

m, = Monotonic loading path

m ¢ = Cyclic loading path
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Biaxial element simulation

e |llustrative biaxial simulation for
element A with OCR=9 (e,=0.65)

« g, controlled biaxial loading in
plane strain

* Results from a NMC model with
similar strength parameter
(f'=25°) and y '=15° plotted for
comparison

Biaxial compression
(OCR=9 & dg,=-0.30)
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*Note that in plane strain, f’ = sin"}(t/s’)




Biaxial extension
(OCR=9 & dg,=+0.30)
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Biaxial cyclic
(OCR=9 & de,=+0.01)

’ t/s’ VS e, ‘

?e = +0.03 after 5 cycles




Biaxial cyclic
(OCR=9 & de,=+0.00125)

’ t/s’ VS e, ‘

?e =-0.0015 after 5 cycles

Conclusions from biaxial element
simulation

» Excellent prediction in monotonic
loading path; but excessive mobilised
stress ratio as expected in monotonic
unloading path

» Cyclic loading of model shows energy
dissipation, and collapse or dilation
depending on magnitude of cycle

« However, volumetric collapse predicted
Is much lower compared with
experimental data




FEA of excavation supported by a
cantilevered wall
(model scale wall height=490mm)

1000mm

1500mm

FEA of retaining walls

Aim is to illustrate the performance of
3SKH model in predicting maximum
excavated depth of a cantilevered wall
embedded in granular soil

For comparison, an identical run was
performed using a Mohr-Coulomb model
of similar material properties (f '=28°)
Analysis performed using 3SKH has
OCR=4 to obtain realistic f’ .,

Surcharge applied at ground level




Predicted maximum depth
(cantilevered wall)

Normalised excavation depth VS Top displacement (mm)

Stress distribution near failure
(cantilevered wall)

Retained side ‘ ’ Excavated side

hiH q T

Wall normal stress (kN/m?2)




Horizontal displacement contours,
Interval=1mm near failure
(cantilevered wall)

R

3SKH (TS with 30050 increments) NMC (MNR with 860 increments)

Maximum shear strain contours,
interval=0.01 near failure
(cantilevered wall)

% N

3SKH (TS with 30050 increments) NMC (MNR with 860 increments)




Conclusions from FEA of
cantilevered wall

Excessive strains predicted in excavation
(kp-unloading )

Tension in the soil easily predicted for OCR
>4

Very large number of increments necessary
using the tangent stiffness scheme to avoid
‘drifting’ of stress state into ‘illegal’ locations

Hence, a modified 3SKH model is proposed
to minimise the problems encountered in
integral abutment situations

Development of a modified 3SKH

3 new parameters, each with its own physical
significance:
» a to modify the shape of the surfaces (Collins, 2002)

= k to reduce the plastic shear component of the
Modified Cam Clay flow rule (McDowell, 2003)

= r to specify the ratio between M; and M, as adopted
by several previous researchers in modelling sand
(e.g. Zienkiewicz, 1999)

The original concept of 3SKH is retained,;

including the translation rules and modification

to the hardening modulus
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Shapes of bounding surface

varying a
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Varying a (constant r=1)
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Shapes of bounding surface

varying r

Varying r (constant a=0.5)
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Stress-dilatancy rule by varying

parameter k

Stress-dilatancy
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Stress path OCR=10 & *?h=-3/2
(Modified 3SKH)

In-situ After one-third of stress path
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Stress path OCR=10 & *?h=-3/2
(Modified 3SKH)

g shear strain

Stress ratio vs shear strain
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Strain path OCR=10 & ?D*=-1
(Modified 3SKH)

In-situ After one-third of stress path
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Strain path OCR=10 & ?D*=-1
(Modified 3SKH)

g shear strain

Stress ratio vs shear strain
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Conclusions

* The main problems of using the original
3SKH model to simulate integral
abutment in drained granular soil has
been outlined

« A modified 3SKH model with 3 extra
parameters to enable variation in shape
of the surfaces, ratio M¢to My and non-
associated flow rule has been formulated

« lllustrations of the translation rule, simple
hardening stress path, and simple strain
path have been performed using Matlab

Conclusions

* To implement into the FE program CRISP,
the formulation has to be transferred in a
generalised stress-strain space

« A more robust solution scheme such as a
MNR method with a suitable integration
algorithm would help to reduce the
computing time and improve accuracy in
using the 3SKH class of models




